Second Variation of Energy for Minimal Surfaces in Riemannian Manifolds
نویسنده
چکیده
This article describes a formula for second variation of energy for twodimensional parametrized minimal surfaces, in which the conformal structure on the two-dimensional domain is allowed to vary. Moreover, it shows that minimal surfaces with branch points have tangential Jacobi fields which are not visible via the standard formulae for second variation of area which is commonly used to study stability of minimal surfaces.
منابع مشابه
Closed minimal surfaces of high Morse index in manifolds of negative curvature
We use Bott’s equivariant Morse theory to show that compact Riemannian three-manifolds with negative sectional curvature possess closed minimal surfaces of arbitrarily high Morse index. 1 Sources of noncompactness for parametrized minimal surfaces In this article, we apply the theory of parametrized two-dimensional minimal surfaces in a compact n-dimensional Riemannian manifold (M, 〈·, ·〉) to t...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملStability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کامل